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Abstract

A rational map γ : P1(C) → P1(C) from the Riemann Sphere to itself is said to be a Lattès
Map if there are “well-behaved” maps ϕ : E(C) → P1(C) and ψ : E(C) → E(C) such that
γ ◦ ϕ = ϕ ◦ ψ. We are interested in those Lattès Maps which are also Bely̆ı Maps and their
associated monodromy groups.

This material is based upon work supported by the National Science Foundation under Grant
No. (DMS-2113782).

Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors, and do not necessarily reflect the
views of the National Science Foundation.
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Introduction and Motivation: Regular Tilings
Triangles Tilings of the Euclidean Plane Tilings of the Torus

60◦ − 60◦ − 60◦

45◦ − 45◦ − 90◦

30◦ − 60◦ − 90◦
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A Dessin d’Enfants is a connected graph uniquely determined by a rational function ϕ. On this graph, each
black vertex represents the preimage ϕ−1({0}), each red vertex represents the preimage ϕ−1({1}), and each

edge is the preimage ϕ−1({(0, 1)}).
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Main Question
How are the Dessins on the sphere and torus related?

Rational map γ(z)

Rational map β(x, y) = γ ◦ ϕ(x, y)
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Definitions
An elliptic curve is a non-singular curve of genus 1 of the form y2 = x3 + A x + B where A, B ∈ C.

Let S = E(C) be the collection of complex numbers x0 and y0 satisfying y2 = x3 + A x + B along with the
“point at infinity” OE . This is a torus. In particular, it is a compact, connected Riemann surface.

Let P , Q, and P ∗ Q be points on E which lie on a line. Then the binary operation P ⊕ Q =
(
P ∗ Q

)
∗ OE

turns
(
E(C), ⊕

)
into an abelian group.
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Definitions

The Riemann sphere P1(C) is defined as C ∪ {∞}.

A Bely̆ı map ϕ : S → P1(C) is a meromorphic (rational) function defined on a compact, connected
Riemann surface S which is ramified over at most three points. We choose these points to be 0, 1, and ∞.

A Lattès map γ : P1(C) → P1(C) is a meromorphic function satisfying γ ◦ ϕ = ϕ ◦ [N ] for some
meromorphic function ϕ : E(C) → P1(C) and “multiplication-by-N” isogeny [N ] : E(C) → E(C) where
[N ]P = P ⊕ · · · ⊕ P .

E(C)
[N ] //

ϕ

��

β

''

E(C)

ϕ

��
P1(C)

γ // P1(C)
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Theorem (Ayberk Zeytin, 2021; PRiME 2022)
Assume γ : P1(C) → P1(C) is a Lattès map.

If ϕ is a Bely̆ı map, then both γ and β = γ ◦ ϕ = ϕ ◦ [N ] are Bely̆ı maps as well.

Any Bely̆ı Lattès map arises from one of three families:

Elliptic Curve Bely̆ı Map ϕ Degree of ϕ

E : y2 = x3 + B ϕ(x, y) =
√

B − y

2
√

B
deg(ϕ) = 3

E : y2 = x3 + A x ϕ(x, y) = −x2

A
deg(ϕ) = 4

E : y2 = x3 + B ϕ(x, y) = −x3

B
deg(ϕ) = 6
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Degree Sequences

Definition
Fix a Bely̆ı map β : S → P1(C) for a compact, connected Riemann surface S.

Since β is ramified at 0, 1, and ∞, then define the branch points as the preimages B = β−1(
{0}

)
,

R = β−1(
{1}

)
, and F = β−1(

{∞}
)
.

Let the ramification index eP of a branch point P ∈ B ∪ R ∪ F be the number of edges that stem from
the point.

The degree sequence is the multiset D =
{{

eP
∣∣ P ∈ B

}
,

{
eP

∣∣ P ∈ R
}

,
{

eP
∣∣ P ∈ F

}}
.
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γ(z) = (z − 1) (z + 1)3

(2 z − 1)3 β(x, y) = γ ◦ ϕ(x, y) = (1 + y) (3 − y)3

16y3

D =
{

{1, 3}, {1, 3}, {1, 3}
}

D =
{

{3, 3, 3, 3}, {3, 3, 3, 3}, {3, 3, 3, 3}
}
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Degree Sequence of β = γ ◦ ϕ = ϕ ◦ [N ]

Let the composition map β be determined by Bely̆ı map ϕ and multiplication-by-N map [N ].

deg ϕ ep for β−1(0) |β−1(0)| ep for β−1(1) |β−1(1)| ep for β−1(∞) |β−1(∞)|

3 3 N2 3 N2 3 N2

4 4 N2 2 2N2 4 N2

6 3 2N2 2 3N2 6 N2

Degree Sequence of β for deg ϕ = 6

D = {{3, . . . , 3}︸ ︷︷ ︸
2N2 copies

, {2, . . . , 2}︸ ︷︷ ︸
3N2 copies

, {6, . . . , 6}︸ ︷︷ ︸
N2 copies

}.
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Degree Sequence of Composition Map β for deg ϕ = 4

D = {{4, . . . , 4}︸ ︷︷ ︸
N2 copies

, {2, . . . , 2}︸ ︷︷ ︸
2N2 copies

, {4, . . . , 4}︸ ︷︷ ︸
N2 copies

}.

Degree Sequences of Bely̆ı Lattès map γ for deg ϕ = 4
Assume N ≡ 1 mod 2, then 0 ∈ B, 1 ∈ W , and ∞ ∈ F . The degree sequence of γ is given by:

D = {{1, 4, . . . , 4︸ ︷︷ ︸
N2−1

4 copies

}, {1, 2, . . . , 2︸ ︷︷ ︸
N2−1

2 copies

}, {1, 4, . . . , 4︸ ︷︷ ︸
N2−1

4 copies

}}.

Assume N ≡ 0 mod 2, then 0, 1, ∞ ∈ F . The degree sequence of γ is given by:

D = {{ 4, . . . , 4︸ ︷︷ ︸
N2

4 copies

}, { 2, . . . , 2︸ ︷︷ ︸
N2

2 copies

}, {1, 1, 2, 4, . . . , 4︸ ︷︷ ︸
N2−4

4 copies

}}.
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Monodromy from a Dessin D’Enfants
Assume that ϕ : S → P1(C) is a Bely̆ı map of degree M . The monodromy group of ϕ is a subgroup of the
symmetric group SM as follows:

1. Label the edges of the Dessin d’Enfants of ϕ using 1 through M .

2. Write down the permutation σ0 as the product of disjoint cycles found from reading the labels
counterclockwise around each “black” vertex.

3. Write down the permutation σ1 as the product of disjoint cycles found from reading the labels
counterclockwise around each “red” vertex.

4. Generate the group Mon(γ) = ⟨σ0, σ1⟩ from these permutations.
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Example

E : y2 = x3 + 1

Bely̆ı map ϕ(x, y) = 1 − y

2 with degree 3

multiplication-by-2 map [2]

E(C)
[2] //

ϕ(x,y)

��

β(x,y)

''

E(C)

ϕ(x,y)

��
P1(C)

γ(z) // P1(C)
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Computing Mon γ

Dessin d’Enfants of Bely̆ı Lattès Map γ(z) = (z − 1) (z + 1)3

(2 z − 1)3

σ0 = (4) (1 3 2)
σ1 = (1) (2 3 4)

Mon γ = ⟨σ0, σ1⟩ ≃ A4 ≃
(

Z
2Z × Z

2Z

)
⋊ Z

3Z
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Computing Mon β

Dessin d’Enfants of composition map β(x, y) = (1 + y) (3 − y)3

16y3

σ0 = (1 7 6) (2 10 9) (3 4 12) (5 8 11)
σ1 = (1 2 3) (4 5 6) (7 8 9) (10 11 12)

Mon β = ⟨σ0, σ1⟩ ≃ A4 ≃
(

Z
2Z × Z

2Z

)
⋊ Z

3Z
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Algorithm

How do we determine the group structure of Mon γ and Mon β?

1. Calculate the Bely̆ı Lattès map γ(z) for a given E(C) and ϕ(x, y).

Do the same for composition map β(x, y).

2. Generate the permutation cycles σ0 and σ1 from the map γ(z).

Apply the same method for β(x, y).

3. Compute the group generated from σ0 and σ1 obtained in part (2) for γ(z). Do the same for β(x, y).

4. Compute the group identifier of the group found in part (3) using sage method. Find the group identifier
associated to β(x, y) and compare the two :)
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Setup and Motivating Question

Assume that ϕ : E(C) → P1(C) is a meromorphic function on an elliptic curve E : y2 = x3 + Ax + B, where
deg(ϕ) = M , satisfying:

1. The following map is an isomorphism

Z⧸MZ −→ Mon(ϕ)

m mod M 7−→ [ζmM ](x, y) =
(
ζ2m
M x, ζ3m

M y
)

.

2. For all N ∈ N, there exists some γ : P1(C) → P1(C) such that γ ◦ ϕ = ϕ ◦ [N ], i.e. the following diagram
commutes

E(C)
[N ] //

ϕ

��

β

((

E(C)

ϕ

��
P1(C)

γ // P1(C)

Question
How are the monodromy groups of β and γ related?
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Theorem
If the previous conditions are met, then the following are true:

1. The composition β = ϕ ◦ [N ] = γ ◦ ϕ is a Bely̆ı map, where deg(β) = N2M .

2. The monodromy group of β is given by Mon(β) = E[N ] ⋊ Z/MZ (here, E[N ] is the subgroup of order-N
points).

3. γ is a Bely̆ı Lattès map with deg(γ) = N2, and

Mon(γ) = E[N ] ⋊
(

dZ
MZ

)
where

d = [Mon(β) : Mon(γ)] =


M N = 1,

2 N = 2 and M even,

1 otherwise.
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Function Fields and Degrees

Definition
Let S be a Riemann Surface, and let ϕ : S → P1(C) be a meromorphic function.

The function field K(S) is the set of all meromorphic maps S → P1(C).

If ϕ : S → P1(C) is meromorphic, define the pullback ϕ∗ : K
(
P1(C)

)
→ K(S) via f(z) 7→ f

(
ϕ(x, y)

)
.

S
ϕ //

ϕ∗f=f◦ϕ
##

P1(C)

f

��
P1(C)

The degree of a map ϕ is the index deg ϕ =
[

K(S) : ϕ∗K
(
P1(C)

) ]
.
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Definition
Let S be a Riemann Surface, and let ϕ : S → P1(C) be a meromorphic function.

The set of Deck Transformations of ϕ, which we call Aut(ϕ), is defined as the automorphisms of S such
that ϕ is preserved under composition:

Aut(ϕ) = {σ ∈ Aut (S) : ϕ ◦ σ = ϕ} .

Examples

E(C) ϕ(x, y) Element of Aut(ϕ) Aut(ϕ)

y2 = x3 + 1 1−y
2 (x, y) 7→ [ζa3 ](x, y) =

(
ζ2a

3 x, ζ3a
3 y

)
Z/3Z

y2 = x3 − x x2 (x, y) 7→ [ζa4 ](x, y) =
(
ζ2a

4 x, ζ3a
4 y

)
Z/4Z

y2 = x3 + 1 x3 (x, y) 7→ [ζa6 ](x, y) =
(
ζ2a

6 x, ζ3a
6 y

)
Z/6Z
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Proof, Part 1: Monodromy of β = ϕ ◦ [N ] and ϕ

Lemma
Let deg(ϕ) = M , then Aut (ϕ) ≃ Z/MZ.

We prove that the map Z/MZ → Aut(ϕ) via a mod M 7→ (P 7→ [ζaM ]P ) is an isomorphism.

Lemma
Aut (β) ≃ E[N ] ⋊ Z/MZ, and Mon(β) = Aut (β).

1. The following map is an isomorphism:

E[N ] ⋊ Z/MZ −→ Aut βN

(P0 , a mod M) 7−→ (P 7→ [ζaM ]P ⊕ P0) .

2. A result from Zoladek states that Mon(β) = Aut(β) iff | Aut(β)| = deg(β).

3. Multiplicative property of degrees gives deg(β) = deg(ϕ) · deg([N ]) = MN2.

4. Since E[N ] ≃ Z
NZ × Z

NZ , we have | Aut (βN ) | = MN2 = deg(β), thus Mon(β) = Aut(β).
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Proof, Part 2: Galois Groups

Definition
Let L be a field, and let k be a subfield. Then we say L is a field extension of k, which we write as L/k.

The dimension of L as a vector space over k, is the degree of the extension L/k, denoted [L : k].

Proposition

L/k is Galois if and only if [L : k] = |Aut(L/k)|, where Aut(L/k) are the automorphisms of L which fix k.
Then its Galois Group is Gal(L/k) = Aut(L/k).

In the following tower of extensions, Aut(L/k) = Aut(β) and Aut(L/K) = Aut(ϕ).

L = K
(
E(C)

)
M

{1}

M

K = ϕ∗K(P1(C))

N2

H = Gal(L/K) = Aut(ϕ) ≃ Z/MZ

N2

k = β∗K(P1(C)) G = Gal(L/k) = Aut(β) ≃ E[N ] ⋊ (Z/MZ)
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Motivating Question

Theorem
Recall that G = Gal(L/k) and H = Gal(L/K). Then K/k is Galois if and only if H ◁ G, in which case
Gal(K/k) = G/H.

L = K
(
E(C)

)
M

{1}

M

K = ϕ∗K(P1(C))

N2

H = Gal(L/K) = Aut(ϕ)

N2

k = β∗K(P1(C)) G = Gal(L/k) = Aut(β)

Question
We want to find Mon(γ). Can’t we just say Mon(γ) ≃ Gal(K/k) ≃ G/H?

Answer
Not necessarily! We don’t know if H ◁ G (i.e. if K/k is Galois). If H isn’t normal in G, we can find the largest
normal subgroup contained in H!
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Proof, Part 3: The Normal Closure of K, and its Galois Group

Proposition
Recall that G ≃ E[N ] ⋊ Z⧸MZ, and H ≃ Z⧸MZ. Then

Mon(γ) = G⧸N̄

N̄ = ∩σ∈GσHσ−1 =


Z/MZ N = 1,

Z/2Z N = 2 and M even,

0 Otherwise.

Corollary

Mon(γ) =


{1} N = 1,

E[N ] ⋊ Z/(M2 )Z N = 2 and M even,

Mon(β) Otherwise.
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Recall the Regular Tilings
Triangles Tilings of the Euclidean Plane Tilings of the Torus

60◦ − 60◦ − 60◦

45◦ − 45◦ − 90◦

30◦ − 60◦ − 90◦
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Triangle Groups

1. Define the following angles of a triangle as π/l, π/n, and π/m.

2. Then we have the triangle group presentation

∆(l, m, n) = ⟨a, b, c | a2 = b2 = c2 = (ab)l = (bc)n = (ca)m = 1⟩.

Monodromy Groups

1. Assume that G = E[N ] ⋊ (Z/MZ). With T1 and T2 = [ζM ]T1 as generators of E[N ], denote the elements

a =
(
T1, 0 mod M

)
, b =

(
T2, 0 mod M

)
, and c =

(
OE , 1 mod M

)
.

Then we have the presentation

G =

〈
a, b, c

∣∣∣∣∣∣
aN = bN = cM = 1,

a b = b a, c a c−1 = b, c b c−1 = a−1 bε

〉
, ε = 2 cos 2π

M
=


−1 if M = 3,
0 if M = 4, and
+1 if M = 6.
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Future Work

What is the relationship between the monodromy groups of β = γ ◦ φ = φ ◦ ψ and γ for
an arbitrary isogeny ψ : E(C) → X(C) between two elliptic curves E and X?

E(C)
ψ //

φ

��

β

))

X(C)

ϕ

��
P1(C)

γ // P1(C)
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Thank You!
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